Commit 7c2c3b97 authored by aohui.li's avatar aohui.li

上传测试报告(含计算均值方差脚本)

parent 61e00a34
Second Time dB
0 00:00:00.0 70.89508819580078
1.48609250352655 00:00:01.4 71.71073913574219
2.972175956015803 00:00:02.9 71.11824798583984
4.458251220164016 00:00:04.4 72.45594024658203
5.944312878870051 00:00:05.9 71.54564666748047
7.43039458670944 00:00:07.4 71.98332977294922
8.916481596002313 00:00:08.9 72.12409973144531
10.40254325470829 00:00:10.4 71.69511413574219
11.88862679395891 00:00:11.8 71.68321990966797
13.37471563855553 00:00:13.3 71.87810516357422
14.86079273606117 00:00:14.8 71.61066436767578
16.34685796498962 00:00:16.3 71.46028137207031
17.8329288771418 00:00:17.8 71.70194244384766
19.31902138066835 00:00:19.3 70.89718627929688
20.80508834082792 00:00:20.8 71.49931335449219
22.29116108439132 00:00:22.2 71.57836151123047
23.77725358791781 00:00:23.7 71.45289611816406
25.26333241860084 00:00:25.2 72.03285217285156
26.7494030511092 00:00:26.7 71.67402648925781
28.23546470981523 00:00:28.2 72.24624633789062
29.7215556711007 00:00:29.7 71.322998046875
31.20763342694744 00:00:31.2 71.9212646484375
32.69369537482368 00:00:32.6 71.62512969970703
34.17978787835023 00:00:34.1 71.69696807861328
35.66587210114056 00:00:35.6 72.06613159179688
37.15194813722871 00:00:37.1 71.63872528076172
38.63800979593475 00:00:38.6 71.42810821533203
40.12408996153312 00:00:40.1 71.66985321044922
41.61017851306701 00:00:41.6 72.05531311035156
43.09624017177305 00:00:43.0 71.40571594238281
44.58232216878258 00:00:44.5 71.26771545410156
46.06841178368023 00:00:46.0 71.23626708984375
47.55448888118588 00:00:47.5 71.87577819824219
49.04055488205432 00:00:49.0 71.86029815673828
50.52662425196547 00:00:50.5 72.58792114257812
52.01271675549202 00:00:52.0 71.88528442382812
53.49878525789262 00:00:53.4 71.38525390625
54.984856459215 00:00:54.9 71.01329803466797
56.47094896274149 00:00:56.4 71.46889495849609
57.95702856372554 00:00:57.9 71.04246520996094
59.4430999681739 00:00:59.4 72.02812957763672
60.92916162687993 00:01:00.9 72.09604644775391
62.41525104592438 00:01:02.4 71.79663848876953
63.90133034401214 00:01:03.9 72.00258636474609
65.38739200271817 00:01:05.3 72.00447845458984
66.8734832531739 00:01:06.8 71.24256896972656
68.35956824626527 00:01:08.3 71.74986267089844
69.84564505429341 00:01:09.8 71.68288421630859
71.33170671299945 00:01:11.3 71.01132965087891
72.81778533635679 00:01:12.8 71.43700408935547
74.30387543013171 00:01:14.3 71.54475402832031
75.78993708883775 00:01:15.7 71.24557495117188
77.27601754360626 00:01:17.2 71.24467468261719
78.76210792880494 00:01:18.7 71.56566619873047
80.24818502631058 00:01:20.2 71.55438232421875
81.73425179911902 00:01:21.7 71.35719299316406
83.22031962678915 00:01:23.2 71.30006408691406
84.7064121303157 00:01:24.7 71.63095092773438
86.19248217495732 00:01:26.1 71.49305725097656
87.67855183403867 00:01:27.6 71.21427154541016
89.16464433756516 00:01:29.1 71.07663726806641
90.6507247088503 00:01:30.6 71.71282196044922
92.1367968852386 00:01:32.1 71.69889068603516
93.62285854394463 00:01:33.6 70.7772216796875
95.10894642074805 00:01:35.1 71.83013153076172
96.59502726107684 00:01:36.5 71.06390380859375
98.08108891978287 00:01:38.0 71.57861328125
99.56717862799758 00:01:39.5 70.75721740722656
101.05326439139 00:01:41.0 71.9151611328125
102.5393414888956 00:01:42.5 71.20343017578125
104.0254036300641 00:01:44.0 71.23812103271484
105.5114807111805 00:01:45.5 70.74362182617188
106.9975723471964 00:01:46.9 71.85482025146484
108.4836340059024 00:01:48.4 71.20673370361328
109.9697129184299 00:01:49.9 70.89810943603516
111.4558040739296 00:01:51.4 71.24118804931641
112.9418811714353 00:01:52.9 70.59805297851562
114.4279487161837 00:01:54.4 71.11927795410156
115.9140150016128 00:01:55.9 71.60615539550781
117.4001075051394 00:01:57.4 71.4635009765625
118.886179092022 00:01:58.8 71.40220642089844
120.3722472088623 00:02:00.3 71.28683471679688
121.8583397123889 00:02:01.8 71.58927917480469
123.344420853975 00:02:03.3 71.55159759521484
124.8304938023033 00:02:04.8 71.697021484375
126.3165554610093 00:02:06.3 71.09741973876953
127.8026417955717 00:02:07.8 71.0240478515625
129.2887241781415 00:02:09.2 71.20985412597656
130.7747858368476 00:02:10.7 71.19481658935547
132.2608740028213 00:02:12.2 71.25338745117188
133.7469605365147 00:02:13.7 71.65579223632812
135.2330376340203 00:02:15.2 71.52577972412109
136.7191005471288 00:02:16.7 71.20256805419922
138.2051760860041 00:02:18.2 71.12387847900391
139.6912685895307 00:02:19.6 71.55663299560547
141.1773309229671 00:02:21.1 71.70133972167969
142.6634082932536 00:02:22.6 71.67710876464844
144.1495002190543 00:02:24.1 71.91761779785156
145.63557731656 00:02:25.6 71.08500671386719
147.1216456332484 00:02:27.1 71.89780426025391
148.6077103764364 00:02:28.6 71.14404296875
150.0938028799631 00:02:30.0 71.40594482421875
151.5798760090867 00:02:31.5 71.35523223876953
153.065942583686 00:02:33.0 71.74847412109375
154.5520350872125 00:02:34.5 71.64832305908203
156.0381169990998 00:02:36.0 71.20561981201172
157.5241907193679 00:02:37.5 71.35076904296875
159.010252378074 00:02:39.0 71.01834106445312
160.4963371703953 00:02:40.4 71.35411071777344
161.9824210952062 00:02:41.9 71.202880859375
163.4684827539122 00:02:43.4 71.06940460205078
164.9545693776449 00:02:44.9 71.47907257080078
166.4406566816394 00:02:46.4 71.14475250244141
167.9267337791451 00:02:47.9 71.27315521240234
169.4127974641935 00:02:49.4 71.87664031982422
170.8988714608278 00:02:50.8 71.97113800048828
172.3849639643543 00:02:52.3 71.80268096923828
173.8710278400318 00:02:53.8 71.46150207519531
175.3571036680772 00:02:55.3 71.57009887695312
176.8431961716038 00:02:56.8 71.47784423828125
178.3292734616848 00:02:58.3 71.39601898193359
179.8153425503132 00:02:59.8 71.36992645263672
181.3014057512602 00:03:01.3 71.19422149658203
182.7874982547868 00:03:02.7 71.36875915527344
184.2735729261515 00:03:04.2 71.38352966308594
185.7596379585098 00:03:05.7 71.43410491943359
187.2457304620361 00:03:07.2 71.39019775390625
188.7318131442244 00:03:08.7 70.84995269775391
190.2178876364327 00:03:10.2 71.43054962158203
191.7039492951387 00:03:11.7 71.63555908203125
193.1900325452191 00:03:13.1 71.63750457763672
194.676118012271 00:03:14.6 71.68423461914062
196.162179670977 00:03:16.1 71.61854553222656
197.6482647524687 00:03:17.6 71.07734680175781
199.134352826764 00:03:19.1 71.47194671630859
200.6204299242697 00:03:20.6 71.63626098632812
202.1064943812582 00:03:22.1 71.22097015380859
203.5925668356515 00:03:23.5 71.48560333251953
205.078659339178 00:03:25.0 71.10712432861328
206.5647247570965 00:03:26.5 71.50216674804688
208.050799042901 00:03:28.0 71.37523651123047
209.5368915464276 00:03:29.5 71.05712127685547
211.0229696068094 00:03:31.0 71.04617309570312
212.5090394673778 00:03:32.5 71.39132690429688
213.9951011260838 00:03:33.9 71.05440521240234
215.4811936296104 00:03:35.4 71.43218994140625
216.9672698432161 00:03:36.9 70.64588165283203
218.4533333333334 00:03:38.4 70.87216949462891
219.9394258368599 00:03:39.9 70.95655822753906
221.4255092893492 00:03:41.4 70.90761566162109
222.9115845534974 00:03:42.9 71.54000091552734
224.3976462122034 00:03:44.3 71.89342498779297
225.8837279200428 00:03:45.8 70.7650146484375
227.3698149293356 00:03:47.3 71.36444854736328
228.8558765880416 00:03:48.8 71.31314849853516
230.3419601272923 00:03:50.3 71.57714080810547
231.8280489718888 00:03:51.8 71.9622802734375
233.3141260693945 00:03:53.3 70.99942779541016
234.8001912983229 00:03:54.8 71.55355072021484
236.2862622104751 00:03:56.2 71.54093170166016
237.7723547140017 00:03:57.7 71.0361328125
239.2584216741612 00:03:59.2 70.81200408935547
240.7444944177247 00:04:00.7 71.15974426269531
242.2305869212512 00:04:02.2 71.222412109375
243.7166657519342 00:04:03.7 71.61532592773438
245.2027363844425 00:04:05.2 72.02040863037109
246.6887980431485 00:04:06.6 72.10697937011719
248.174889004434 00:04:08.1 71.56369018554688
249.6609667602809 00:04:09.6 71.31732177734375
251.147028708157 00:04:11.1 71.45979309082031
252.6331212116835 00:04:12.6 71.85116577148438
254.1192054344739 00:04:14.1 71.25777435302734
255.6052814705621 00:04:15.6 71.59183502197266
257.0913431292681 00:04:17.0 71.74280548095703
258.5774232948664 00:04:18.5 71.46776580810547
260.0635118464004 00:04:20.0 71.78144073486328
261.5495735051064 00:04:21.5 71.00426483154297
263.0356555021159 00:04:23.0 71.07742309570312
264.5217451170136 00:04:24.5 71.25870513916016
266.0078222145193 00:04:26.0 71.88552093505859
267.4938882153876 00:04:27.4 71.38005065917969
268.9799575852987 00:04:28.9 71.71780395507812
270.4660500888253 00:04:30.4 71.90877532958984
271.9521185912259 00:04:31.9 71.30335235595703
273.4381897925483 00:04:33.4 71.46401214599609
274.9242822960748 00:04:34.9 71.259033203125
276.4103618970589 00:04:36.4 71.63086700439453
277.8964333015072 00:04:37.8 71.96122741699219
279.3824949602133 00:04:39.3 71.56322479248047
280.8685843792576 00:04:40.8 71.52021026611328
282.3546636773455 00:04:42.3 71.58937835693359
283.8407253360515 00:04:43.8 70.28354644775391
285.3268165865072 00:04:45.3 66.30707550048828
286.8129015795986 00:04:46.8 54.91185760498047
288.2989783876268 00:04:48.2 51.44306182861328
289.7850400463328 00:04:49.7 48.56111907958984
zt,jd
74.4,73.9
75.1,74.9
75.2,74
75,73.6
74.1,74.2
73.8,74
74.5,73.6
74.7,74.2
74.9,74.8
75.1,73.6
74.9,74
73.9,74.6
74.6,74.3
74.3,74
75,73.6
74.6,74.2
74.6,73.6
74.8,74.9
74.7,74.2
75.9,73.9
\ No newline at end of file
zt,jd
115.2,109.5
114.6,117.3
114.7,117.3
114.4,117.1
114.5,117.1
114.1,117.1
114.6,117.1
113.6,117.1
114.6,117.1
114.6,117.1
114.5,117.1
114.5,117.1
114.6,117.1
114.6,117.1
114.7,117.1
114.7,117
114.6,117.1
114.7,117.1
114.6,117.1
114.6,116.7
\ No newline at end of file
zt,jd
40.9,46.6
41.7,43.8
44.5,62.1
41.7,43.2
42.1,68.3
42,43.6
42.4,42.2
43.1,45
41.7,56.8
42.5,43.2
41.7,59.9
58.3,42.9
42.4,64
50.6,43.1
42.7,65
45.7,43.6
42.6,63.9
42.4,43
42.3,59.6
42.8,43.1
42.5,42.6
41.2,43.2
42.6,42.7
42,43.8
\ No newline at end of file
import numpy as np
import pandas as pd
# 传感器的数据
# data_zt = np.array([115.2, 114.6, 114.7, 114.4, 114.5, 114.1, 114.6, 113.6, 114.6, 114.6, 114.5, 114.5, 114.6, 114.6, 114.7, 114.7, 114.6, 114.7, 114.6, 114.6])
# data_jd = np.array([109.5, 117.3, 117.3, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117.1, 117, 117.1, 117.1, 117.1, 116.7])
data_file_Motor_Long = 'MotorLong.csv'
data_file_1KHz_High = '_1KHz_High.csv'
data_file_1KHz_Low = '_1KHz_Low.csv'
data_file = data_file_1KHz_Low
data = pd.read_csv(data_file)
data_zt = data['zt'].values
data_jd = data['jd'].values
# 计算均值
mean_zt = np.mean(data_zt)
mean_jd = np.mean(data_jd)
# 计算方差
variance_zt = np.var(data_zt)
variance_jd = np.var(data_jd)
variance_between = np.var(data_zt - data_jd) # 两者之间的方差
# 计算百分比差异
percent_diff = np.abs((mean_zt - mean_jd) / ((mean_zt + mean_jd) / 2)) * 100
# 计算最大值和最小值的偏差
max_deviation = np.abs(np.max(data_zt) - np.max(data_jd))
min_deviation = np.abs(np.min(data_zt) - np.min(data_jd))
mean_zt, mean_jd, variance_zt, variance_jd, variance_between, percent_diff, max_deviation, min_deviation
print(f"mean_zt:\t{mean_zt:.2f}")
print(f"mean_jd:\t{mean_jd:.2f}")
print(f"variance_zt:\t{variance_zt:.2f}")
print(f"variance_jd:\t{variance_jd:.2f}")
print(f"variance_between:\t{variance_between:.2f}")
print(f"percent_diff:\t{percent_diff:.2f}")
print(f"max_deviation:\t{max_deviation:.2f}")
print(f"min_deviation:\t{min_deviation:.2f}")
# zt传感器均值: 114.55
# jd传感器均值: 116.71
# zt传感器方差: 0.0835
# jd传感器方差: 2.7523
# 两者之间的方差: 3.3293
# 百分比差异: 1.87%
# 最大值偏差: 2.10
# 最小值偏差: 4.10
Second Time dB
Second Time dB #Start@11:49:38
0 00:00:00.0 33.14538955688477
1.486076213604974 00:00:01.4 33.62919998168945
2.97213970372286 00:00:02.9 39.49447250366211
......
......@@ -3,7 +3,7 @@ import matplotlib.pyplot as plt
from io import StringIO
file_path = 'data.csv'
file_path = '_1KHz.csv'
# Read data into a pandas DataFrame
df = pd.read_csv(file_path, sep=" ", parse_dates=["Time"])
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment